Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites

نویسندگان

  • Parker L. Andersen
  • Fang Xu
  • Barry Ziola
  • W. Glen McGregor
  • Wei Xiao
چکیده

In response to DNA damage such as from UV irradiation, mammalian Y-family translesion synthesis (TLS) polymerases Polη and Rev1 colocalize with proliferating cell nuclear antigen at nuclear foci, presumably representing stalled replication sites. However, it is unclear whether the localization of one polymerase is dependent on another. Furthermore, there is no report on the in vivo characterization of the Rev3 catalytic subunit of the B-family TLS polymerase Polζ. Here we describe the detection of endogenous human Polη, Rev1, and Rev3 by immunocytochemistry using existing or newly created antibodies, as well as various means of inhibiting their expression, which allows us to examine the dynamics of endogenous TLS polymerases in response to UV irradiation. It is found that Rev1 and Polη are independently recruited to the nuclear foci, whereas the Rev3 nuclear focus formation requires Rev1 but not Polη. In contrast, neither Rev1 nor Polη recruitment requires Rev3. To further support these conclusions, we find that simultaneous suppression of Polη and Rev3 results in an additive cellular sensitivity to UV irradiation. These observations suggest a cooperative and sequential assembly of TLS polymerases in response to DNA damage. They also support and extend the current polymerase switch model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mismatch repair protein MSH2 regulates translesion DNA synthesis following exposure of cells to UV radiation

Translesion DNA synthesis (TLS) can use specialized DNA polymerases to insert and/or extend nucleotides across lesions, thereby limiting stalled replication fork collapse and the potential for cell death. Recent studies have shown that monoubiquitinated proliferating cell nuclear antigen (PCNA) plays an important role in recruitment of Y-family TLS polymerases to stalled replication forks after...

متن کامل

All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis.

Most organisms contain several members of a recently discovered class of DNA polymerases (umuC/dinB superfamily) potentially involved in replication of damaged DNA. In Escherichia coli, only Pol V (umuDC) was known to be essential for base substitution mutagenesis induced by UV light or abasic sites. Here we show that, depending upon the nature of the DNA damage and its sequence context, the tw...

متن کامل

Postreplication gaps at UV lesions are signals for checkpoint activation.

Exposure of eukaryotic cells to UV light induces a checkpoint response that delays cell-cycle progression after cells enter S phase. It has been hypothesized that this checkpoint response provides time for repair by signaling the presence of structures generated when the replication fork encounters UV-induced DNA damage. To gain insight into the nature of the signaling structures, we used time-...

متن کامل

Lysine 63-Polyubiquitination Guards against Translesion Synthesis–Induced Mutations

Eukaryotic cells possess several mechanisms to protect the integrity of their DNA against damage. These include cell-cycle checkpoints, DNA-repair pathways, and also a distinct DNA damage-tolerance system that allows recovery of replication forks blocked at sites of DNA damage. In both humans and yeast, lesion bypass and restart of DNA synthesis can occur through an error-prone pathway activate...

متن کامل

Characterization of Escherichia coli UmuC active-site loops identifies variants that confer UV hypersensitivity.

DNA is constantly exposed to chemical and environmental mutagens, causing lesions that can stall replication. In order to deal with DNA damage and other stresses, Escherichia coli utilizes the SOS response, which regulates the expression of at least 57 genes, including umuDC. The gene products of umuDC, UmuC and the cleaved form of UmuD, UmuD', form the specialized E. coli Y-family DNA polymera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2011